SQUENCE AND SERIES

WHAT IS A PROGRESSION?

A progression is a list of things (usually numbers) that are in order.

TYPE OF PROGRESSION

Arithmetic Progression

Geometric progression

Harmonic **Progression** Arithmetico Geometric progression

Miscellaneous **Progression**

Arithmetic Progression

Definition (

A pattern of numbers that increases or decreases by a constant number. E.g. 4, 7, 10, 13.....

General Progression

General form of an arithmetic progression is given as a, a+d, a+2d..., a+(n-1)d

Where: a - First term | d - Common difference

nth term

General term of an arithmetic progression is given as

$$T_n = a + (n-1)d$$

Sum of 'n' terms

If 'n' terms a,a+d,a+2d...,a+(n-1)d are in arithmetic progression Then the sum of 'n' terms:

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

Airthmetic Mean 🥌

If a₁, a₂,...,a_n are in arithmetic progression then the Arithmetic Mean (AM) is:

$$A_m = \frac{a_1 + a_2 + \dots + a_n}{n}$$
 or $= \frac{S_n}{n}$

If A₁, A₂....A_n are 'n' arithmetic means between two numbers 'a' and 'b' then a, A1, A2....An, b are in AP.

$$d = \frac{b - a}{n + 1}$$

Where common diffrence $d = \frac{b-a}{n+1}$ and arithmetic means are $A_i = a+i\frac{b-a}{n+1}$

$$A_i = a + i \frac{b - a}{n + 1}$$

Geometric Progression

Definition

The progression, where the ratio of successive terms of a progression is constant E.g. 4, 8, 16, 32, 64, here the common ratio is 2.

General Progression

General form of a geometric progression is given as a, ar, ar²,.... arⁿ⁻¹

Where: a - First term r - Common ratio

nth term

General term of a geometric progression is given as

$$T_n = a \cdot r^{(n-1)}$$

Sum of 'n' terms 🛑

If 'n' terms a, ar, ar2,.... arn-1 are in geometric progression then the sum of 'n' terms:

$$S_n = \frac{a(r^n-1)}{r-1}; r \neq 1$$

Geometric Mean

If a₁, a₂, ..., a_n are in geometric progression then the geometric mean (GM) is:

$$G_m = (a_1 \cdot a_2 \cdot a_3 \dots a_n)^{1/n}$$

If G1, G2....Gn are 'n' geometric means between two numbers 'a' and 'b' then a, G1, G2.....Gn, b are in G.P.

$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

Where common ratio
$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$
 and geometric means are $G_i = a\left(\frac{b}{a}\right)^{\frac{i}{n+1}}$

Arithmetico Geometric Progression

Definition

The result of the multiplication of a geometric progression with the corresponding terms of an arithmetic progression

General Progression 🚭

a, (a+d)r, (a+2d)r2, (a+3d)r3... Where:

a - First term r - Common ratio of GP d - Common difference of AP

nth Term

General term of a arithmetico geometric progression is

$$T_n = [a+(n-1)d]r^{(n-1)}$$

Sum of 'n' Terms

a, (a+d)r, $(a+2d)r^2$,..... are in AGP then sum of the terms is:

If
$$|r| < 1$$
 and 'n' tends to infinity then sum of infinite terms is:

$$S_n = \frac{a}{1-r} + \frac{rd(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d]r^n}{1-r}$$

$$\lim_{n \to \infty} S_n = \frac{a}{(1 - r)} + \frac{rd}{(1 - r)^2}$$